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The flat-plate boundary layer equation for a rheological power law
and a proposed nonlinear law of heat conduction is reduced to an ordi-
nary differential equation, which is solved in quadratures using pre-
viously calculated [2] velocity profiles. Graphs of the temperature and
heat transfer coefficient profiles are presented.

We write the equation of the thermal boundary layer
neglecting viscous dissipation:
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In order to solve this equation it is necessary to have
the velocity profiles u(x, y) and v(x, y), obtained by
solving the dynamic equations, and to specify the law
of heat conduction.

For a fluid governed by the rheological power law [1]
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in the case of a plate and a Fourier law of heat conduc~
tion at n = 1 Eq. (1) does not have similar solutions.

Two possible forms of the law of heat conduction
ensuring self-similarity of (1) in the case of a plate
and fluid (2) are
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q=—N|gradT|{*'grad T. (4)

Law (3) can be justified on the basis of phenomeno-
logical considerations; law (4) for plane flow is anal-
ogous in form to law (2). At n = 1 both laws go over
into the Fourier law.

We will derive a solution of Eq. (1) for law (4).

Using Eq. (4), we reduce Eq. (1) to the dimension-
less form
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*In the given problem 060y, < 0.

The boundary conditions of Eg. (5) have the form
0=1 at 4 =0;0=0 at y = . (7
At s = 1 Eq. (5 for 0 is identical with the equation
of the dynamic boundary layer for uy [2]; in this case

in accordance with boundary conditions (7), as for law
(3) when o = Kep/H = 1, we have the similarity relation

(s=1). (8)

As in [2], going over in (5) from %, y; to the
Prandtl-Mises variables x;, ¢4(x, ¥y, we obtain
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where
d® = —u,do. (10)

By means of the substitution
1
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we transform (9) into the ordinary equation
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Here, the prime denotes the derivative with respect
to ¢, and the function

z=u%2 (13)
satisfies the dynamic equation {2]
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whose approximate solution has the form {2]
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After transformation, boundary conditions (7) take
the form

0=1 at {=0,
9=0 at {=w. (16)

From (10) and (13), using the first of conditions (16),
it follows that
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Fig. 1. Temperature profiles in the boundary layer: a and b) at s =1

and 20 (1, at n=0.33; 2, 0.5; 3, 0,71; 4, 1.0; 5, 1,33; 6, 2.0; 7, 3.0);
canddjatn =033 andn=3 (1, at s =1; 2, 2; 3, 5; 4, 10; 5, 20).
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Fig, 2, Heat transfer characteristics: 1) at s =1;
2) 2; 3) 5; 4) 10; 5) 20,
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The integration of Eq. (12) using (14) and (15) gives

O =Cexp(—st?) (n=1),

O =[sr—1) (- (), (18)

where C, and C, are arbitrary constants. Then, in ac-
cordance with (17), (18), and (15),
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The constant C in (20) is known from the solution
obtained in [2]; for n =1 C; and C, are determined
from the second of conditions (16), for n > 1 from the
condition

dE (n=£1). (20

0=0,0=0 at =g, 21

where £5 corresponds to the finite thickness of the
boundary layer [2]. From (20) it follows that £5 = (C,) 3
The constant Cy was determined by the method of
chords [3].
Figure 1 presents examples of the calculation of
profiles of 9 as a function of , where
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It is clear that as s increases, the thickness of the
thermal boundary layer decreases both for n = 1 and
forn> 1.
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Using Eqgs. (4), (8), (10), and (22), we determine

the local heat transfer coefficient

St —oly=o _ Ene (23)
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s
Values of Eg are presented in Fig. 2.

NOTATION

p is the density of fluid; cy is the specific heat; x
is the longitudinal coordinate; y is the transverse co-
ordinate; u and v are the velocity vector components
along the x- and y-axes, respectively; T is the abso-

__lute temperature; Ty, is the same at the wall; Tu is the

same in the external flow; q is the conductive heat flux
vector; T is the viscous stress tensor; € is the strainrate
tensor; I is the second invariant of tensor e; Kand n
are the rheological characteristics of the {luid: H and iy
are the heat conduction characteristics; Uis the external
flow velocity; L is the characteristic length; R is the
Reynolds number; Ryx is the local Reynolds number;

s and o are the generalized Prandtl numbers; St is the
Stanton number.
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